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J. Phys. A: Math. Gen., Vol. 12, No. 7, 1979. Printed in Great Britain 

LETTER TO THE EDITOR 

Confluent singularities and hyperscaling in the spin-: Ising 
model 

J J Rehr 
Department of Physics, University of Washington, Seattle, Washington 98195, USA 

Received 3 April 1979 

Abstract. Using a confluent singularity analysis based on the generalised recurrence 
method, the series for the correlation length in terms of a dimensionless coupling constant is 
analysed, extending an approach of Nickel and Sharpe. The results suggest that the spin-; 
BCC king model satisfies hyperscaling and has the same confluent singularity structure 
expected for models of the ( n  = 1, d = 3) universality class. 

A long-standing puzzle in the theory of critical phenomena has been the apparent 
failure of hyperscaling in the three-dimensional spin-; Ising model (Baker 1977, Baker 
and Kincaid 1979). The apparent absence (Sykes et a1 1972, Saul et a1 1975, Camp and 
Van Dyke 1975, Camp et a1 1976) of the confluent singularities originally suggested by 
Wortis (1970) and predicted by renormalisation group theory (Wegner 1972) has also 
been puzzling . The purpose of this letter is to present new evidence which points 
toward a resolution of one or both of these questions. 

Following a recent re-examination of the hyperscaling question by Nickel and 
Sharpe (1979), we have performed a confluent singularity analysis on the series for the 
correlation length 5 in terms of a dimensionless coupling constant. The results suggest 
that the BCC spin-; Ising model satisfies hyperscaling and, more definitely, exhibits the 
confluent singularity structure expected of the (n = 1, d = 3) universality class. 

Specifically, our approximants are consistent with hyperscaling and give a value of 
3 u * / 1 6 ~  = 1.43 for the universal renormalised coupling constant, which is close to that 
obtained from Callen-Symanzik perturbation theory (Baker et a1 1978). The first 
correction to the scaling exponent is estimated to be w1 = 0.79, in good agreement with 
results for the continuum model (Baker et a1 1978); thus, the Wortis-Wegner cor- 
rection to the scaling exponent is Al = w l v  % 0.50 (v = 0.63). We also report for the first 
time from series analysis an estimate for the second correction to the scaling exponent, 
w2 = 1.4, which appears to be distinct from 2wl; this value is in rough agreement with a 
preliminary result of the scaling field approach (Golner and Riedel 1976, Reidel et a1 
1979, unpublished). 

As in the argument of Nickel and Sharpe, it is convenient to examine the series for 
x (  y )  = ( t / a ) 2  in terms of a dimensionless variable y which varies linearly with x for 
small x .  This variable is directly related to the renormalised coupling constant U ; for the 
BCC lattice, 3 u / 1 6 ~  = ( l / 2 ~ f i ) y - ~ ’ ~ .  The series x(y) is obtained by reverting high 
temperature series for the susceptibility x,  for the second moment of the spinspin 
correlation function M2, and for the fourth field derivative of the free energy a2X/aH2, 
using the definitions t2 - M 2 / x  and U - 5 - d  (a 2 x / a H 2 ) / x 2 .  
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From a generalised scaling theory which permits violations of hyperscaling (see, for 
example, Fisher 1973) one expects a leading behaviour for y of the form 

where w i  are the corrections to scaling exponents (or integral multiples thereof) and pi 
are smooth functions. The validity of hyperscaling implies that the anomalous dimen- 
sion d* = 0, and hence that y tends to a finite critical value y *  as the correlation length 
diverges. Thus, if hyperscaling holds, 

X (  y ) / y  = * Al(1- y / y * ) - * '  +A2(1- Y / Y * ) - * ~  + . . . (2) 
Y + Y  

where A 1  =2/wl,  Az=(2-w2+w1)/w~, etc. 
Instead of analysing x(y), Nickel and Sharpe examined the series for y (  y )  = 

(dln x/dy)-' by PadC approximant techniques. They concluded with a reasonable 
degree of confidence that y (  y) for the BCC lattice does have a zero at y*, in support of 
the hyperscaling hypothesis (although an analysis in the temperature plane gave 
conflicting results). Now it is implicit in such a PadC approximant analysis that y *  is a 
simple zero of y (  y )  or that corrections beyond the leading term are weak. However, the 
presence of a second zero close to y *  in their approximants leads one to conjecture that 
y * is the beginning of a branch-point singularity due to the confluent singularity 
structure in equation (2). 

We have therefore performed a confluent singularity analysis on the series expan- 
sion x ( y ) / y  using a generalisation of the recurrence method (Guttmann and Joyce 
1972). This method is described in detail in a forthcoming article (Rehr et a1 1979). In 
brief, the series coefficients in x (  y ) / y  = Zyc,y" are fitted to the polynomial coefficients 
of a linear differential equation of order K ,  

K 

C Qi( Y ) A ' $ (  y )  = P( y )  A = Y (d/dY) (3) 

where Qi( y )  are polynomials of respective degrees Mi and P( y )  is a polynomial of 
degree L. These differential equation approximants [MO, M1, . . . MK ; L] represent a 
natural generalisation of the PadC approximant; for example, the Dlog Pad6 approxi- 
mant corresponds to a first-order, homogeneous differential equation of the form (3). 
The singular points of each approximant are given by the zeros of the polynomial 
QK(y), and the critical exponents are determined from the solution of the indicia1 
equation at these points (see, for example, Ince 1927). To represent a function with two 
confluent power-law singularities, approximants of second or higher order are 
required; also in this case QK( y )  must have a double zero at y * ,  though good estimates 
of the critical exponents are possible if two zeros of QK are sufficiently close. 

We examined first homogeneous [MO, MI, Mz] =[MO, M 1 ,  Mz; 41 approximants. 
These approximants all exhibited singularities at y* = 0.160. This is consistent with a 
conclusion that d* = 0, but since d* could be very small, this conclusion cannot be made 
with certainty. Biased estimates of the critical parameters in equation (2) were then 
made by fixing y* to be a double zero of OK( y )  for several values of y* close to 0.160. It 
has been observed (Rehr et a1 1979) from test series that this is a reliable method of 
estimating the correct critical parameters when the exact critical-point location is not 
known. 

i=O 
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The conjecture that y *  is a confluent singularity point of x ( y )  is borne out by the 
observation that the singularity structure of the [MO, MI, A421 approximants in the y 
plane is stable if y*  is a double zero of Qz(  y ) .  The pair of characteristic BCC singularities 
(Gaunt and Guttmann 1974) at - *120" found in many approximants are outside the 
circle of convergence IyI = y * ,  and no other singularities are nearby when M2 > 4. Also, 
the approximants examined yielded reasonably consistent estimates for the two critical 
exponents A 1 and Az .  

Our results for these exponents at y *  = 0.1602, a value of minimal scatter among the 
various approximants, are given in table 1.  Note that the scatter among the estimates of 
the dominant exponent is larger than that for the leading correction term. This is 
unusual in our experience and is due to the smallness of the critical amplitude A From 
these approximants we estimate that A = 2.53 and A z  = 1.74, both with uncertainty of a 
few per cent. Related quantities are listed in table 2. 

Table 1. Critical exponents A and A 2  from [MO, M1, M2] approximants at y *  = 0.1602. 

333 2.555 3.017 1.796 3.025 
1.706 1.733 1.580 1.770 

494 1.790 2.554 2.433 2.538 
1,172 1.767 1.761 1.769 

5 , 5  1.788 2.519 
-0.476 1.763 

Table 2. Critical parameters for the BCC, s = f king model derived from y *  = 0.1602, 
A l  = 2.53, A 2  = 1.74 (see text) and (in parentheses) results from other work. 

3u*/16v 1.433 (1.416') 
0 1  0.79 (0.788") 
Ai  0.50 (0.496") 
U 2  1.4 (1.5b) 
A2 0.90 

a Baker et a1 (1978); Riedel et a1 (1979, unpublished). 

Although y *  is a singular point of the differential equation approximants, the 
corresponding solutions are unphysical unless x (  y )  = is positive over the full 
physical range 0 s y s y * .  The possibility of x dropping below zero might be inter- 
preted as an indication of the failure of hyperscaling, as the zero at y * has been built into 
our biased analysis. To check this possibility we have integrated the [4,4,4] approxi- 
mant numerically, thereby obtaining the integral approximant for x (  y ) / y  (Hunter and 
Baker 1979; see also Fisher and Au-Yang 1979, Rehr eta1 1979). Definingan effective 
exponent A ( w )  = dln ( x / y ) / d w  with w = -ln(l - y / y * ) ,  one finds from equation (3) with 
P = 0 that A ( U )  satisfies a nonlinear, first-order differential equation 

R;?(dA/dw) + R 2 A 2  + RIA + Ro = 0 (4) 
where Ro = Qo, R I  = y ( Q 1  + Q z ) / (  y*  - y )  + R2 and R Z  = y 2 Q 2 / (  y *  - y) ' .  We remark 
that Ri( y )  are the coefficients in a differential equation for x (  y ) / y  similar to ( 3 )  but with 
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the origin shifted to y * .  Note that the fixed points of equation (4) are the solutions of the 
indicia1 equation at y * ;  i.e. A = A 1  (stable) and A = A z  (unstable). 

A difficulty with this calculation stems from the fact that y = 0 is a regular singular 
point of equation (3), so that an integration beginning at w = 0 is unstable. We have 
therefore used as an initial condition the value of A ( U )  at w = 0.15; this value correct to 
ten significant figures was determined from the series expansion for x ( y ) .  The 
integration was then performed using a four-point Runge-Kutta-Gill algorithm, with a 
step size 0.0005 for w s 1. The results are plotted in figure 1. The critical amplitude 
Al = + 0.0087 was evaluated by Simpson’s rule using 

Al=y*exp( jom(A(w) -Al )dw) .  ( 5 )  

The amplitude Az = + 0.30 was then estimated from the expression 

Due to the sensitivity of the calculations on the integration procedure, the values of A 1  
and Az reported here must be regarded as tentative. The value of A 1  is several times 
larger than that corresponding to the error bounds on the null results for confluent 
singularities in ,y (Camp et a1 1976). The result that both critical amplitudes are 
positive lends added support to the validity of hyperscaling. However, due to the 
smallness of A 1, this result must be viewed cautiously. If A were slight!y negative, the 
opposite conclusion might be drawn. These results imply that at least one of the series 

W 

Figure 1. Effective exponent A = dln(x/y) dw against w = -In(l - y/y*) obtained by 
integrating the [4,4,41 approximant (Al =2.554, A 2  = 1.767). Also shown is the cor- 
relation length ,$ = ax”2, units of the lattice constant a. 
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x, M2, or d2,y/dH2 should have contributions from the leading confluent correction term 
and that the second confluent correction to the scaling term should be present with 
appreciable magnitude. A possible explanation of why such terms have not been 
apparent in previous temperature-plane analyses is that A2 = u 2 u  = 0.9 is very close to 
unity, and probably indistinguishable from observed analytical factors. In summary, we 
have found additional evidence for the validity of hyperscaling in the BCC, s = 3 Ising 
model. However, whether hyperscaling is valid or not, the leading confluent singularity 
structure is found to be consistent with that of the (n = 1, d = 3) universality class. 

We wish to thank B G Nickel for many comments and for suggesting the method of 
obtaining integral approximants used here. We also thank K Kim for assistance with 
the series analysis and E K Riedel for discussions. This work was supported in part by 
NSF Grant DMR76-82112. 
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